Feb. 11, 2013 ? A discovery using stem cells from a patient with motor neuron disease could help research into treatments for the condition. The study used a patient's skin cells to create motor neurons -- nerve cells that control muscle activity -- and the cells that support them called astrocytes.
Researchers studied these two types of cells in the laboratory. They found that a protein expressed by abnormalities in a gene linked to motor neuron disease, which is called TDP-43, caused the astrocytes to die.
The study, led by the University of Edinburgh and funded by the Motor Neurone Disease Association, provides fresh insight into the mechanisms involved in the disease.
Although TDP-43 mutations are a rare cause of motor neuron disease (MND), scientists are especially interested in the gene because in the vast majority of MND patients, TDP-43 protein (made by the TDP-43 gene) forms pathological clumps inside motor neurons.
Motor neurons die in MND leading to paralysis and early death.
This study shows for the first time that abnormal TDP-43 protein causes death of astrocytes. The researchers, however, found that the damaged astrocytes were not directly toxic to motor neurons.
Better understanding the role of astrocytes could help to inform research into treatments for MND.
Professor Siddharthan Chandran, of the University of Edinburgh, said: "Motor neuron disease is a devastating and ultimately fatal condition, for which there is no cure or effective treatment. It is not just a question of looking solely at motor neurons, but also the cells that surround them, to understand why motor neurons die. Our aim is to find ways to slow down progression of this devastating disease and ultimately develop a cure."
These findings, published in the journal Proceedings of the National Academy of Sciences., are significant as they show that different mechanisms are at work in different types of MND.
The research, led by the University of Edinburgh's Euan MacDonald Centre for Motor Neurone Research, was carried out in collaboration with King's College, London, Columbia University in New York, the University of California and the Gladstone Institutes in San Francisco.
Dr Brian Dickie, the MND Association's Director of Research Development, said: "From a therapeutic perspective this finding is important because it means that specific treatments targeted at astrocytes may only be relevant and effective, in specific subsets of patients who will have to be carefully selected for drug trials."
Share this story on Facebook, Twitter, and Google:
Other social bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by University of Edinburgh.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Note: If no author is given, the source is cited instead.
Disclaimer: This article is not intended to provide medical advice, diagnosis or treatment. Views expressed here do not necessarily reflect those of ScienceDaily or its staff.
Source: http://feeds.sciencedaily.com/~r/sciencedaily/most_popular/~3/brOMFda4Du4/130211162331.htm
prometheus grand canyon skywalk tonga pid corned beef hash the walking dead season 2 finale born free
No comments:
Post a Comment